Data Structures and Algorithm Analysis

12

Dr. Syed Asim Jalal
Department of Computer Science
University of Peshawar

In this lecture

- Asymptotic Performance
- How does the algorithm behave as the problem size gets very large....?
- Asymptotic Notations
-0
$-\Theta$
$-\Omega$
-0
$-\omega$

What is asymptotic analysis?

- Asymptotic analysis deals with analyzing the properties of the running time when the input size goes to infinity (this means a very large input size)
- The differences between orders of growths are more significant for larger input size. Analyzing the running times on small inputs does not allow us to distinguish between efficient and inefficient algorithms
- The objective of asymptotic analysis is to describe the behavior of a function $T(N)$ as it goes to infinity.
- Asymptotic notations are used to describe the asymptotic analysis

Function Bounds..

- Lets understand with the help of example. Suppose we have a function $10 \mathrm{~N}^{2}$
- Can we say it is bounded by $11 \mathrm{~N}^{2}$ and $9 \mathrm{~N}^{2}$ for all N ≥ 1 ?
- i.e $10 \mathrm{~N}^{2}$ cannot go above $11 \mathrm{~N}^{2}$ and doesn't come down below $9 \mathrm{~N}^{2}$ for all values of $\mathrm{N} .10 \mathrm{~N}^{2}$ is sandwiched between $9 N^{2}$ and $11 N^{2}$
- Now if $f(n)$ is $10 N^{2}$ and $g(n)$ is N^{2}
- Then we say that $f(n)$ is $\Theta(g(n))$
- (explanation later..)

Asymptotic Notations

big-Theta $\Theta(\mathrm{g}(\mathrm{n}))$
Big-Oh
$\mathrm{O}(\mathrm{g}(\mathrm{n}))$
big-Omega $\Omega(\mathrm{g}(\mathrm{n}))$
little-oh $\quad O(g(n))$
little-omega $\omega(\mathrm{g}(\mathrm{n}))$

Big-Theta

- A function $f(n)$ is $\Theta(g(n))$ if there exist a positive constants c_{1}, c_{2}, and n_{0} such that

$$
0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}), \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

- We define $\Theta_{(g(n)) \text { to be a set of functions that are }}$ asymptotically equivalent to $\mathrm{g}(\mathrm{n})$
- A function $f(n)$ belongs to the set $\Theta(g(n))$, if there exist positive constants c_{1} and c_{2}, such that $g(n)$ can be "sandwiched" between $\mathrm{c}_{1} \mathrm{~g}(\mathrm{n})$ and $\mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$, for sufficiently large n .
- Representation:

$$
\begin{aligned}
& -" f(n)=\Theta(g(n)) " \text { or } \\
& -" f(n) \in \Theta(g(n)) "
\end{aligned}
$$

- We say this as:
$-f(n)$ and $g(n)$ are asymptotically equivalent.
Or
$-g(n)$ is asymptotically tight bound for $f(n)$

$f(n)=\Theta(g(n))$

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

- The following equations are asymptotically equivalent
- $5 n^{2}$
- $2 n^{2}-5 n+10$
- $\left(8 n^{2}+2 n-3\right)$
- ($\left.n^{2} / 5+\sqrt{n}-10 \log n\right)$
- $n(n-3)$

As ' n ' becomes large, the dominant term is some constant times $\mathbf{n}^{\mathbf{2}}$

Lower and upper bounds (Example1)

- $f(n)=8 n^{2}+2 n-3$
- To show that $f(n) \in \Theta\left(n^{2}\right)$
- We need to find the following three values.
- c1, c2 and n_{o}
- To find Lower bound we need $c 1$ and n_{0}
- To find Upper bound we need c2 and n_{0}
- We will have two n_{0}, select the maximum n_{0}

Finding c_{1} and n_{o} (Example1)

$$
\begin{aligned}
& \text { Lower bound: } \quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \\
& f(n)=8 n^{2}+2 n-3, f(n) \in \Theta\left(n^{2}\right)
\end{aligned}
$$

- $\mathrm{C}_{1} \mathrm{n}^{2} \leq 8 \mathrm{n}^{2}+2 \mathrm{n}-3$??
- $7 n^{2} \leq 8 n^{2}+2 n-3$
- $\mathrm{C}_{1}=7$
- $\mathrm{N}_{\mathrm{o}}=1$
C_{1} can be anything lesser than the constant with n^{2} of the expression

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{o}}=1 \\
& 7(1)^{2} \leq 8(1)^{2}+2(1)-3 \\
& 7 \leq 8+2-3 \\
& 7 \leq 7
\end{aligned}
$$

Finding c_{2} and n_{0} (Examplex)

Upper Bound: $\quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
$f(n)=8 n^{2}+2 n-3, f(n) \in \Theta\left(n^{2}\right)$
$8 n^{2}+2 n-3 \leq c_{2} n^{2}$
$8 n^{2}+2 n-3 \leq 9 n^{2}$
$=>8 n^{2}+2 n-3 \leq 9 n^{2}$
C_{2} can be anything greater than the constant with n^{2} of the expression
$\mathrm{C}_{2}=9$
$\mathrm{N}_{\mathrm{o}}=1$

$f(n)=\Theta(g(n))$

$1 / 2 n^{2}-3 n=\Theta\left(n^{2}\right)$

$c_{1} n^{2} \leq 1 / 2 n^{2}-3 n \leq c_{2} n^{2}$
for all $n \geq n_{0}$. Dividing by n^{2} yields

$$
c_{1} \leq 1 / 2-3 / n \leq c_{2} .
$$

$$
c_{1}=1 / 14
$$

$$
c_{2}=1 / 2
$$

$$
n_{0}=7
$$

OR
 $\mathrm{C}_{1}=1 / 4$
 $\mathrm{n}_{0}=13$

Intuitively, the lower-order terms of an asymptotically positive function can be ignored in determining asymptotically tight bounds because they are insignificant for large n. A tiny fraction of the highest-order term is enough to dominate the lower-order terms. Thus, setting c_{1} to a value that is slightly smaller than the coefficient of the highest-order term and setting c_{2} to a value that is slightly larger permits the inequalities in the definition of Θ-notation to be satisfied. The coefficient of the highest-order term can likewise be ignored, since it only changes c_{1} and c_{2} by a constant factor equal to the coefficient.

Example 2

$f(n)=2 n^{2}-5 n+10$
$\mathrm{f}(\mathrm{n}) \in \Theta\left(\mathrm{n}^{2}\right) ? ?$

- $1 n^{2} \leq 2 n^{2}-5 n+10$
... for lower bound
-C1=1, $N_{o}=1$
- $2 \mathrm{n}^{2}-5 \mathrm{n}+10 \leq 2 \mathrm{n}^{2}$
... for upper bound
$-\mathrm{C} 1=2, \mathrm{~N}_{\mathrm{o}}=2$

Practice

$$
\begin{aligned}
& f(n)=\left(3 n^{2} / 2\right)+(5 n / 2)-3 \\
& f(n) \in \Theta\left(n^{2}\right) ? ?
\end{aligned}
$$

$$
\begin{aligned}
& -\mathrm{C}_{1}=1 \\
& -\mathrm{C}_{2}=2, \\
& -\mathrm{N}_{\mathrm{o}}=? ? ?
\end{aligned}
$$

Example 3

- $f(n)=3 n+3$
- $\mathrm{g}(\mathrm{n})=\mathrm{n}$
$-\mathrm{f}(\mathrm{n}) \in \Theta(\mathrm{n})$
$\mathrm{C}_{1}=2, \mathrm{~N}_{\mathrm{o}}=1$
$\mathrm{C}_{2}=4, \mathrm{~N}_{\mathrm{o}}=3$
$N_{o}=3$

Suppose ...

- $f(n)=2 n^{3}-5 n^{2}+10 n+1$
- $g(n)=n^{2}$
- Is $f(n) \in \Theta(g(n))$???
- No.

$6 n^{3} \neq \Theta\left(n^{2}\right)$

Lower bound:

$$
5 n^{2} \leq 6 n^{3}
$$

Upper Bound: $\quad 6 n^{3} \leq ? n^{2} \quad \ldots$ always false

O-notation (Big-O)

- Sometimes we are only interested in proving one bound or the other
- We use O-notation, when we have only an asymptotic upper bound
- $O(\mathrm{~g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n}) \mid$ there exist positive constants ' c ' and ' n_{0} ' such that $0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$ \}
- We write it as $f(n)=O(g(n))$
' $O(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$.

$g(n)$ is an asymptotic upper bound for $f(n)$.
- If any quadratic function $a n^{2}+b n+c$ is in $\Theta\left(n^{2}\right)$ is also a $O\left(n^{2}\right)$
- Example:

$$
\begin{aligned}
& -f(n)=2 n^{2} \\
& -g(n)=n^{2} \\
& -f(n)=O(g(n)) \\
& f \text { for } c=5 / 2, n_{0}=1
\end{aligned}
$$

Practice examples

Examples of functions in $O\left(n^{2}\right)$:
n^{2}
$n^{2}+n$
$n^{2}+1000 n$
$1000 n^{2}+1000 n$
Also,
n
$n / 1000$
$n^{1.99999}$
$n^{2} / \lg \lg \lg n$

- $2 \mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{3}\right):$

$$
2 n^{2} \leq c n^{3} \Rightarrow c=1 \text { and } n_{0}=2
$$

- $\mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{2}\right)$

$$
\mathrm{n}^{2} \leq \mathrm{cn} n^{2} \Rightarrow \mathrm{c}=1 \text { and } \mathrm{n}_{0}=1
$$

- $1000 \mathrm{n}^{2}+1000 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$
$1000 n^{2}+1000 \mathrm{n} \leq \mathrm{cn}^{2} \Rightarrow \mathrm{c}=1001$ and $\mathrm{n}_{0}=1000$

Ω - notation

- Just as O-notation provides an asymptotic upper bound on a function, omega notation provides an asymptotic lower bound.
- $\Omega(g(n))=$ the set of functions with a larger or same order of growth as $g(n)$
$\Omega(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that

$$
\left.0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\right\}
$$

- $5 n^{2}=\Omega(n)$
- $0 \leq c n \leq 5 n^{2}, c=1$ and $n_{0}=1$
- $100 n+5 \neq \Omega\left(n^{2}\right)$
$-0 \leq c n^{2} \leq 100 n+5$
- $n=\Omega(n)$
- $n^{3}=\Omega\left(n^{2}\right)$

Examples of functions in $\Omega\left(n^{2}\right)$:

```
n
n
n
1000n}\mp@subsup{n}{}{2}+1000
1000n}\mp@subsup{n}{}{2}-1000
Also,
n
n
n}\mp@subsup{n}{}{2}\operatorname{lg}\operatorname{lg}\operatorname{lg}
2}\mp@subsup{2}{}{n
```


Theorem

$$
f(n)=\Theta(g(n))
$$

if and only if

$$
f=O(g(n)) \text { and } f=\Omega(g(n))
$$

