Data Structures and Algorithm Analysis

Dr. Syed Asim Jalal Department of Computer Science University of Peshawar

In this lecture

- Asymptotic Performance
 - How does the algorithm behave as the problem size gets very large....?
- Asymptotic Notations
 - O
 - $-\Theta$
 - $-\Omega$
 - **-** 0

What is asymptotic analysis ?

- Asymptotic analysis deals with analyzing the properties of the running time when the input size goes to infinity (this means a very large input size)
 - The differences between orders of growths are more significant for larger input size. Analyzing the running times on small inputs does not allow us to distinguish between efficient and inefficient algorithms
 - The objective of asymptotic analysis is to describe the behavior of a function T(N) as it goes to infinity.
 - Asymptotic notations are used to describe the asymptotic analysis

Function Bounds..

- Lets understand with the help of example. Suppose we have a function 10N²
- Can we say it is bounded by 11N² and 9N² for all N
 ≥ 1?
 - i.e 10N² cannot go above 11N² and doesn't come down below 9N² for all values of N. 10N² is sandwiched between 9N² and 11N²
 - Now if f(n) is $10N^2$ and g(n) is N^2
 - Then we say that f(n) is Θ (g(n))
 - (explanation later..)

Asymptotic Notations

big-Theta $\Theta(g(n))$ O(g(n))**Big-Oh big-Omega** $\Omega(g(n))$ **O**(g(n)) little-oh little-omega $\omega(g(n))$

Big-Theta

- A function f(n) is Θ (g(n)) if there exist a positive constants c_1 , c_2 , and n_0 such that
 - $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, for all $n \ge n_0$
 - We define $\Theta(g(n))$ to be a **set** of functions that are **asymptotically equivalent** to g(n)
 - A function f(n) belongs to the set $\Theta(g(n))$, if there exist positive constants c_1 and c_2 , such that g(n) can be "sandwiched" between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n.

• Representation:

$$-$$
 "f(n) = $\Theta(g(n))$ " or
- "f(n) $\in \Theta(g(n))$ "

• We say this as:

- f(n) and g(n) are *asymptotically equivalent*. Or

-g(n) is **asymptotically tight bound** for f(n)

$f(n) = \Theta(g(n))$

$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$

- The following equations are asymptotically equivalent
- 5n²
- 2n² 5n + 10
- (8n² + 2n − 3)
- $(n^2/5 + \sqrt{n} 10 \log n)$
- n(n 3)

As 'n' becomes large, the **dominant** term is some constant times **n**²

Lower and upper bounds (Example1)

- $f(n) = 8n^2 + 2n 3$
 - To show that $f(n) \in \Theta(n^2)$
 - We need to find the following three values.
 - -c1, c2 and n_o
- To find Lower bound we need c1 and n_o
- To find Upper bound we need c2 and n_0 - We will have two n_0 , select the maximum n_0

Finding c_1 and n_o (Example 1)

- $\begin{array}{ll} \underline{\text{Lower bound:}} & 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \\ f(n) = 8n^2 + 2n 3, \ f(n) \in \Theta \ (n^2) \end{array}$
- $C_1 n^2 \le 8n^2 + 2n 3$?
 - $7n^2 \leq 8n^2 + 2n 3$
 - c₁=7
 - N_o = 1

C₁ can be anything lesser than the constant with n² of the expression

 $n_{o} = 1$ 7(1)² ≤ 8(1)²+2(1)-3 7 ≤ 8+2-3 7 ≤ 7

Finding c_2 and n_0 (Example 1)

<u>Upper Bound:</u> $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ $f(n) = 8n^2 + 2n - 3$, $f(n) \in \Theta(n^2)$ $8n^2 + 2n - 3 \leq C_2 n^2$ $8n^2 + 2n - 3 < 9n^2$ $=>8n^{2} + 2n - 3 < 9n^{2}$

 $C_2 = 9$ $N_{0} = 1$

 C_2 can be anything greater than the constant with n² of the expression

$f(n) = \Theta(g(n))$

$$1/2n^{2} - 3n = \Theta(n^{2})$$

$$c_{1}n^{2} \le 1/2n^{2} - 3n \le c_{2}n^{2}$$
for all $n \ge n_{0}$. Dividing by n^{2} yields
$$c_{1} \le 1/2 - 3/n \le c_{2}.$$

$$c_{1} = 1/14$$

$$c_{2} = 1/2$$

$$n_{0} = 7$$

$$OR$$

$$C_{1} = 1/4$$

$$n_{0} = 13$$

Intuitively, the lower-order terms of an asymptotically positive function can be ignored in determining asymptotically tight bounds because they are insignificant for large *n*. A tiny fraction of the highest-order term is enough to dominate the lower-order terms. Thus, setting c_1 to a value that is slightly smaller than the coefficient of the highest-order term and setting c_2 to a value that is slightly larger permits the inequalities in the definition of Θ -notation to be satisfied. The coefficient of the highest-order term can likewise be ignored, since it only changes c_1 and c_2 by a constant factor equal to the coefficient.

Example 2

 $\frac{f(n) = 2n^2 - 5n + 10}{f(n) \in \Theta(n^2)??}$

• $1n^2 \le 2n^2 - 5n + 10$ - C1= 1, N_o = 1

... for lower bound

• $2n^2 - 5n + 10 \le 2n^2$... for upper bound - C1= 2, N₀ = 2 Practice

$$f(n) = (3n^2 / 2) + (5n/2) - 3$$

$$f(n) \in \Theta(n^2)??$$

$$-C_1 = 1$$

 $-C_2 = 2,$
 $-N_0 = ???$

Example 3

- f(n) = 3n+3• g(n) = n $- f(n) \in \Theta(n)$ $C_1 = 2, N_0 = 1$ $C_2 = 4, N_0 = 3$
 - $N_{o} = 3$

Suppose ...

- $f(n) = 2n^3 5n^2 + 10n + 1$
- $g(n) = n^2$
- Is $f(n) \in \Theta(g(n))$???
- No.

 $6n^3 \neq \Theta(n^2)$

Lower bound:

Upper Bound:

 $5n^2 \le 6n^3$ $6n^3 \le ?n^2 \dots$ always false

O-notation (Big-O)

- Sometimes we are only interested in proving one bound or the other
- We use O-notation, when we have only an asymptotic upper bound
- $O(g(n)) = \{f(n) \mid \text{there exist positive constants 'c'}$ and 'n₀' such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$
- We write it as f(n) = O(g(n))

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that}$ $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

g(n) is an *asymptotic upper bound* for f(n).

- If any quadratic function $an^2 + bn + c$ is in $\Theta(n^2)$ is also a $O(n^2)$
- Example:

$$-f(n) = 2n^{2}$$

$$-g(n) = n^{2}$$

$$-f(n) = O(g(n))$$

for c = 5/2, n₀ = 7

Practice examples

```
Examples of functions in O(n^2):
n^2
n^2 + n
n^2 + 1000n
1000n^2 + 1000n
Also,
п
n/1000
n^{1.99999}
n^2/\lg \lg \lg n
```

- $2n^2 = O(n^3)$: $2n^2 \le cn^3 \Rightarrow c = 1 \text{ and } n_0 = 2$
- $n^2 = O(n^2)$

 $n^2 \le cn^2 \Rightarrow c = 1$ and $n_0 = 1$

• $1000n^2 + 1000n = O(n^2)$

 $1000n^{2}+1000n \le cn^{2} \implies c=1001 \text{ and } n_{0} = 1000$

Ω - notation

- Just as O-notation provides an asymptotic *upper* bound on a function, omega notation provides an *asymptotic lower bound*.
 - Ω(g(n)) = the set of functions with a larger or same order of growth as g(n)

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

g(n) is an *asymptotic lower bound* for f(n).

- $5n^2 = \Omega(n)$
 - $0 \le cn \le 5n^{2}$, c = 1 and $n_0 = 1$
- 100n + 5 ≠ Ω(n²)
 - $0 \le cn^2 \le 100n + 5$
- n = Ω(n)
- $n^3 = \Omega(n^2)$

Examples of functions in $\Omega(n^2)$:

 n^2 $n^{2} + n$ $n^{2} - n$ $1000n^2 + 1000n$ $1000n^2 - 1000n$ Also, n^3 $n^{2.00001}$ $n^2 \lg \lg \lg n$ $2^{2^{n}}$

Theorem

$f(n) = \Theta(g(n))$

if and only if

f = O(g(n)) and $f = \Omega(g(n))$